Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes
نویسندگان
چکیده
Using the pseudo amino acid (PseAA) composition to represent the sample of a protein can incorporate a considerable amount of sequence pattern information so as to improve the prediction quality for its structural or functional classification. However, how to optimally formulate the PseAA composition is an important problem yet to be solved. In this article the grey modeling approach is introduced that is particularly efficient in coping with complicated systems such as the one consisting of many proteins with different sequence orders and lengths. On the basis of the grey model, four coefficients derived from each of the protein sequences concerned are adopted for its PseAA components. The PseAA composition thus formulated is called the "grey-PseAA" composition that can catch the essence of a protein sequence and better reflect its overall pattern. In our study we have demonstrated that introduction of the grey-PseAA composition can remarkably enhance the success rates in predicting the protein structural class. It is anticipated that the concept of grey-PseAA composition can be also used to predict many other protein attributes, such as subcellular localization, membrane protein type, enzyme functional class, GPCR type, protease type, among many others.
منابع مشابه
A Protein Structural Classes Prediction Method based on Various Information Fusion
Protein structural class’s knowledge plays an important role in understanding the folding mode of protein. The prediction of protein structural classes as a transitional stage of the secondary structure of the protein to the tertiary structure is considered to be an important and challenging task. In this paper, PSI-BLAST profile is used to extract the evolutionary information of protein, and t...
متن کاملUsing pseudo amino acid composition to predict protein structural classes: Approached with complexity measure factor
The structural class is an important feature widely used to characterize the overall folding type of a protein. How to improve the prediction quality for protein structural classification by effectively incorporating the sequence-order effects is an important and challenging problem. Based on the concept of the pseudo amino acid composition [Chou, K. C. Proteins Struct Funct Genet 2001, 43, 246...
متن کاملPrediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network.
It is a critical challenge to develop automated methods for fast and accurately determining the structures of proteins because of the increasingly widening gap between the number of sequence-known proteins and that of structure-known proteins in the post-genomic age. The knowledge of protein structural class can provide useful information towards the determination of protein structure. Thus, it...
متن کاملUsing amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
MOTIVATION With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and c...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 29 12 شماره
صفحات -
تاریخ انتشار 2008